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Abstract
We show that a recently proposed shifted large-l expansion is exactly the well-
known shifted large-N expansion. Results for truncated Coulomb potentials
cast doubts on previous conclusions drawn from shifted large-l calculations.

PACS number: 03.65.Ge

Large-N expansions prove to be a simple and sufficiently accurate way of calculating energies
of one-dimensional and central-field quantum-mechanical models. Such approaches are
extremely popular and have therefore been discussed by many authors. Despite such
popularity, there still seems to be a good deal of misunderstanding about them. For
example, the authors of two recent papers propose a variant of the well-known shifted
large-N expansion technique (SLNT) [1–3] that they call the pseudoperturbative shifted-l
expansion technique (PSLET) [4, 5]. They state, ‘the difficulty in calculating high-order
corrections in SLNT through Rayleigh–Schrödinger perturbation theory results in loss in
accuracy. PSLET makes it possible to calculate high-order corrections, which improves the
accuracy’, and ‘the outstanding feature of the attendant PSLET is that it avoids troublesome
questions such as those pertaining to the nature of small-parameter expansions, . . .’ [5].

We believe that such statements are at least misleading, and for that reason here we
discuss and compare the SLNT and the PSLET. The SLNT is an expansion in powers of
k̄−1/2, k̄ = k − a, k = N + 2l, where N, l and a stand for the number of dimensions, the
angular momentum quantum number and a properly chosen shift, respectively. On the other
hand, the PSLET is an expansion in powers of l̄−1/2, where l̄ = l − β, and β is a shift. After
expanding the potential-energy function and the centrifugal term in Taylor series about an
appropriate point r0 one is left with the Hamiltonian operator for a harmonic oscillator plus a
polynomial perturbation. Then one applies perturbation theory and obtains the perturbation
series for the eigenfunctions and eigenvalues.

Up to this point, the PSLET and the SLNT are similar; however, Odeh and Mustafa
[4, 5] seem to believe that the SLNT is somehow tied to a particular way of calculation of the
perturbation corrections, which restricts systematic improvement to low order. They appear to
be unaware of earlier SLNT calculations of much greater orders [6–9] than those considered
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in their papers. Moreover, the method used in those earlier papers for the calculation of the
perturbation corrections for excited states is much more efficient than that used by Odeh and
Mustafa.

The convergenceproperties of the SLNT and the PSLET perturbation series depend on the
form of the potential-energy function and on the value of the shift parameter [6–11]. Therefore,
it is not true that one can bypass questions regarding the ‘smallness of the perturbation’.

In order to make all those points clear,here we apply the SLNT to some truncated Coulomb
potentials and carry out a perturbation calculation of order greater than those considered by
Odeh and Mustafa [5], and try to find out whether the PSLET is in any way different to, or
offers any advantage over, the well-known SLNT.

For brevity, we consider the dimensionless radial eigenvalue equation Ĥ� = E�, where
Ĥ = − 1

2
d2

r2 + (k−1)(k−3)

8r2 + V (r), V (r) is the potential-energy function, k = N + 2l, N is the
space dimension and l = 0, 1, . . . is the angular momentum quantum number. The radial part
of the eigenfunction satisfies the boundary conditions �(0) = �(∞) = 0 for bound states.

We define k̄ = k −a, where a is an appropriate shift (see below), introduce a perturbation
parameter λ = k̄−1/2 and expand the potential-energy function and the centrifugal term in
Taylor series about r = r0; for example, V (r) = ∑∞

j=0 Vj (r0)(r − r0)
j , Vj(r) = 1

j !
dj

drj V (r).

Choosing the expansion point r0 to satisfy 4r3
0V1(r0) = k̄2 we obtain a new Hamiltonian

operator [11]

ĥ = r2
0 λ2Ĥ − (k − 1)(k − 3)λ2

8
− r2

0 λ2V0

= −1

2

d2

dq2
+

ω2

2
q2 +

∞∑
j=1

(ajq
j+2 + bjq

j )λj +
∞∑

j=1

cjq
jλj+2

(1)

where q = r−r0
λr0

, ω2 = 3
4 + 2r4

0 V2

k̄2 , aj = (−1)j (j+3)

8 + Vj+2

k̄2 r
j+4
0 , bj = (−1)j (2−a)(j+1)

4 , and cj =
(−1)j (a−1)(a−3)(j+1)

8 .
The Hamiltonian ĥ is a dimensionless harmonic oscillator with frequency ω plus a

polynomial perturbation. Therefore, we can apply perturbation theory to ĥχ = εχ and
obtain λ-power series for the eigenvalue ε and the eigenfunction χ . From the perturbation
series for ε we easily obtain the eigenvalue of the original equation

E = V0 +
1

8r2
0 λ2

+
2a − 4 + 8ε0

8r2
0λ2

+
(a − 1)(a − 3) + 8ε2

8r2
0

+
1

r2
0

∞∑
j=2

ε2jλ
2j−2 (2)

where ε0 = (
ν + 1

2

)
ω and ν = 0, 1, . . . is the harmonic-oscillator quantum number. One can

easily prove that the perturbation corrections of odd order ε2j+1 vanish for all j [11].
The purpose of the shift parameter a is the improvement of the convergence properties

of the perturbation series. It is customary to choose a in order to remove the third term
on the right-hand side of equation (2): a = 2 − 4ε0 = 2 − 2(2ν + 1)ω. In this way, the
SLNT gives the correct answer for the harmonic oscillator and the hydrogen atom to all orders
[1–3, 9]. However, there are difficult cases in which this simple choice is insufficient and it
is necessary to select an order-dependent value of a according to minimal sensitivity or any
other appropriate criterion [6–11].

It follows from the equations given above that r0 depends on k and ν:

2 − 2(2ν + 1)

√
3V1 + 2r0V2

4V1
= k − 2

√
r3

0 V1. (3)

At this point, it is appropriate to compare the SLNT with the PSLET. First, one easily
convinces oneself that equation (3) is equivalent to that derived by Odeh and Mustafa [4, 5].
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Second, note that k̄
2 = l̄ = l − β for N = 3 if β = a−3

2 . Therefore, if the shift parameters
a and β are chosen according to the same criterion, then the SLNT and the PSLET give
exactly the same result. In other words, the PSLET is nothing but a disguised SLNT. The
only advantage of the method proposed by Mustafa and Odeh [4, 5] appears to be a claimed
improved calculation of the perturbation corrections. However, as we have already noted in
the introduction, there are earlier calculations [6–9] of much larger order than those considered
by Mustafa and Odeh, and, consequently, their claim seems to lack support.

In addition to what we have just mentioned, Mustafa and Odeh state that the accuracy
of the PSLET results increases with the number of radial nodes (ν in the equations above);
however, their approach based on logarithmic perturbation theory is impractical for highly
oscillatory wavefunctions. In fact, they appear to draw that conclusion from results for at
most one nodal surface [5]. Moreover, they first suggest that the PSLET series are asymptotic
divergent and then conclude, ‘the PSLET results show a good converging trend to the exact
values as the truncation parameter becomes larger . . . ’ [5]. It is well known that in some
cases one does not appreciate the divergence of the perturbation series if one does not take
into account terms of sufficiently large order. We show some results below.

Following Odeh and Mustafa [5] we consider the truncated Coulomb potentials V (r) =
− 1

(rb+αb)1/b , α, b > 0. In order to calculate the perturbation coefficients ε2j we make use of the
method of Swenson and Danforth that combines perturbation theory with the hypervirial and
Hellmann–Feynman theorems [11]. Although this method does not give the eigenfunction
explicitly, it is most convenient for our present purposes because it is easily programmable
and yields perturbation corrections of any order in terms of the quantum numbers of the
unperturbed Hamiltonian operator (the harmonic oscillator in the present case). Therefore, the
calculation of the energy of highly oscillatory states offers no more difficulty than the ground
state. This is not the case for the logarithmic perturbation theory that becomes increasingly
cumbersome as the number of nodes increases [5].

We carry out the calculation by means of Maple [12] in the following way: first, we obtain
the perturbation coefficients εj exactly in terms of unevaluated ε0, ω, aj , bj and cj ; second,
we substitute the symbolic values of those variables according to the equations shown above;
third, we solve equation ( 3) for r0 numerically for the chosen values of α and b and convert the
result to a fraction; fourth, we obtain the sum (2) in floating-point arithmetic with a sufficient
number of digits. In this way, we hope to avoid round-off errors. We truncate the divergent
series S = t0 + t1 + t2 + · · · according to a well-known criterion based on the assumption that
the error of SM = t0 + t1 + · · · + tM is proportional to |tM+1| [11, 13]. In this communication
E = S and tj is the term corresponding to the perturbation coefficient ε2j .

We expect the accuracy of the approach to decrease with α because the potential-energy
function is singular at r = (−1)1/bα. In what follows, we consider the case b = 1 as a
benchmark. We are aware that one can solve this simple model more efficiently in other ways.
For example, one can transform the Schrödinger equation for the s states into a hypergeometric
equation, or into a three-term recurrence relation for any state by means of a straightforward
power-series expansion with an appropriate exponential factor [14]. In this way, one may
easily obtain much more accurate results for such particular example. On the other hand, the
SLNT and PSLET apply to real and rational values of b which the power-series method may
not be suitable for.

Table 1 shows SM, log |tM | and log |tM/SM | for α = 0.1, l = ν = 0; α = 0.1 being the
most unfavourable case considered by Odeh and Mustafa [5]. Note that the logarithmic error
decreases from M = 0 to M = 12 and then it appears to increase as expected for an asymptotic
divergent series. Although Maple enables one to use floating-point arithmetic of arbitrary
precision, the RAM of our computer was insufficient to perform calculations of larger order
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Figure 1. Logarithmic relative error for the energies supported by the potential-energy function
V (r) = −1/(r + 0.1) for several values of l and ν.

Table 1. Shifted large-N expansion for the ground-state eigenvalue (l = 0, ν = 0) of the potential
V (r) = −1/(r + 0.1).

M SM log |tM | log |tM/SM |
0 −0.386 −0.45 −0.04
2 −0.389 −2.54 −2.13
4 −0.3865 −2.68 −2.27
6 −0.3869 −3.37 −2.96
8 −0.3876 −3.14 −2.73

10 −0.3879 −3.52 −3.11
12 −0.3878 −3.78 −3.37
14 −0.3874 −3.42 −3.00

with sufficient accuracy. According to the present calculation (and the truncation criterion
mentioned above) the SLNT approximate energy is E = −0.3879 with a logarithmic relative
error log |tM/SM | = −3.37. This result agrees with the corresponding Padé approximant
constructed by Odeh and Mustafa [5], and our estimate of the logarithmic error is consistent
with the difference between the perturbation and exact energies [5].

As already stated above, our perturbation series is valid for any radial quantum number
ν. This generality comes from an appropriate implementation of Rayleigh–Schrödinger
perturbation theory already discussed above, and enables us to study the accuracy of the
SLNT (or PSLET) in terms of ν. Figure 1 shows the logarithmic relative error for l = 0, l = 1
and l = 2, as a function of ν. We clearly appreciate that the error decreases with l and slowly
increases with ν, except for misleading oscillations at low values of ν that may mask the
overall trend. The former behaviour is explained by the obvious fact that the perturbation
parameter decreases with l. On the other hand, as ν increases, the energy approaches the rim
of the well and is increasingly affected by the anharmonic part of the potential. Odeh and
Mustafa [5] concluded, ‘The accuracy of the PSLET results increases with increasing l and/or
nr ’. However, they did not really monitor the sole effect of nr on the accuracy because they
allowed l to increase with nr (ν in present notation) as they considered states 1s, 3p and 4d.
The apparent reason for the choice of that sequence of states was that they were unable to
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apply their perturbation algorithm to eigenfunctions with more than one node. Figure 1, on
the other hand, shows the effect of ν on the accuracy for fixed values of l.

We have tried to prove the following facts. First, the PSLET is just a version of the
SLNT for three dimensions. Second, it is not true that the PSLET enables one to obtain more
perturbation corrections than the SLNT. In fact, here we have obtained more perturbation
corrections and for more states than those ever considered by Odeh and Mustafa [5] because
we resorted to a more efficient implementation of perturbation theory. Third, it seems that the
SLNT (and, consequently, also the PSLET) is divergent. As expected, the accuracy of properly
truncated series increases with the angular quantum number and decreases with the radial
quantum number. We agree with Odeh and Mustafa [5] in that the SLNT yields acceptable
eigenvalues for truncated Coulomb potentials over a wide range of quantum numbers, and for
that reason we do not believe it necessary to resort to more sophisticated choices of the shift
parameter a [9–11].
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